Bakker, R. T. Dinosaur physiology and the origin of mammals. Evolution25, 636–658 (1971).
Google Scholar
Hopson, J. A. Endothermy, small size, and the origin of mammalian reproduction. Am. Nat.107, 446–452 (1973).
Google Scholar
Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z. X. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia University Press, New York, 2004).
Google Scholar
O’Leary, M. A. et al. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science339, 662–667 (2013).
Google Scholar
Ji, Q., Luo, Z. X., Yuan, C. X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science311, 1123–1127 (2006).
Google Scholar
Luo, Z. X. & Wible, J. R. A Late Jurassic digging mammal and early mammalian diversification. Science308, 103–107 (2005).
Google Scholar
Luo, Z. X. et al. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science347, 760–764 (2015).
Google Scholar
Meng, Q. J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science347, 764–768 (2015).
Google Scholar
Meng, Q. J. et al. New gliding mammaliaforms from the Jurassic. Nature548, 291–296 (2017).
Google Scholar
Luo, Z. X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature548, 326–329 (2017).
Google Scholar
Hu, Y., Meng, J., Wang, Y. & Li, C. Large Mesozoic mammals fed on young dinosaurs. Nature433, 149–152 (2005).
Google Scholar
Krause, D. W. et al. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature515, 512–517 (2014).
Google Scholar
Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature581, 421–427 (2020).
Google Scholar
Bonaparte, J. F. Approach to the significance of the Late Cretaceous mammals of South America. Berliner geowiss Abh E13, 1–44 (1994).
Archibald, J. D. Timing and biogeography of the eutherian radiation: Fossils and molecules compared. Mol. Phylogenet. Evol.28, 350–359 (2003).
Google Scholar
Hunter, J. P. & Janis, C. M. Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia. J. Mammal. Evol.13, 89–123 (2006).
Google Scholar
Wible, J. R., Rougier, G. W., Novacek, M. J. & Asher, R. J. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature447, 1003–1006 (2007).
Google Scholar
Rougier, G. W., Martinelli, A. G. & Forasiepi, A. M. Mesozoic Mammals from South America and Their Forerunners (Springer Nature, Berlin, 2021).
Google Scholar
Springer, M. S., Murphy, W. J., Eizirik, E. & O’Brien, S. J. Placental mammal diversification and the Cretaceous-Tertiary boundary. PNAS100, 1056–1061 (2003).
Google Scholar
Springer, M. S., Meredith, R. W., Janecka, J. E. & Murphy, W. J. The historical biogeography of Mammalia. Philos. Trans. R. Soc. B: Biol. Sci.366, 2478–2502 (2011).
Google Scholar
Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science294, 2348–2351 (2001).
Google Scholar
Madsen, O. et al. Parallel adaptive radiations in two major clades of placental mammals. Nature409, 610–614 (2001).
Google Scholar
Scally, M. et al. Molecular evidence for the major clades of placental mammals. J. Mammal. Evol.8, 239–277 (2001).
Google Scholar
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol.17, e3000494. https://doi.org/10.1371/journal.pbio.3000494 (2019).
Google Scholar
Beck, R. M. & Baillie, C. Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc. R. Soc. B285(1893), 20181632 (2018).
Google Scholar
Upham, N. S., Esselstyn, J. A. & Jetz, W. Molecules and fossils tell distinct yet complementary stories of mammal diversification. Curr. Biol.31, 4195–4206 (2021).
Google Scholar
Prasad, G. V., Jaeger, J. J., Sahni, A., Gheerbrant, E. & Khajuria, C. K. Eutherian mammals from the upper Cretaceous (Maastrichtian) intertrappean beds of Naskal, Andhra Pradesh, India. J. Vert. Paleontol.14, 260–277 (1994).
Google Scholar
Prasad, G. V. et al. First mammal evidence from the Late Cretaceous of India for biotic dispersal between India and Africa at the KT transition. CR Palevol.9, 63–71 (2010).
Google Scholar
Sigogneau-Russell, D., Hooker, J. J. & Ensom, P. C. The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the ‘dual origin’of Tribosphenida. C. R. Acad. Sci. S II A Earth Planet. Sci.333, 141–147 (2001).
Krause, D. W. Fossil molar from a Madagascan marsupial. Nature412, 497–498 (2001).
Google Scholar
Averianov, A. O., Archibald, J. D. & Martin, T. Placental nature of the alleged marsupial from the Cretaceous of Madagascar. Acta Palaeontol. Pol.48, 149–151 (2003).
Rana, R. S. & Wilson, G. P. New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontol. Pol.48, 331–348 (2003).
Goswami, A. et al. A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. PNAS108, 16333–16338 (2011).
Google Scholar
Chimento, N., Agnolín, F. L. & Martinelli, A. G. Mesozoic mammals from South America: Implications for understanding early mammalian faunas from Gondwana. Contr. Mus. Argent. Cienc. Nat.6, 199–209 (2016).
Castro, M. C. et al. A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group. R. Soc. Open Sci.5, 180482 (2018).
Google Scholar
Moyano-Paz, D. et al. The uppermost Cretaceous continental deposits at the southern end of Patagonia, the Chorrillo Formation case study (Austral-Magallanes Basin): Sedimentology, fossil content and regional implications. Cretaceous Res.130, 105059 (2022).
Google Scholar
Novas, F. et al. Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina. Rev. Mus Argent. Cienc. Nat.21, 217–293 (2019).
Google Scholar
Muizon, C. D. Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and paleobiologic implications. Geodiversitas20, 19–142 (1998).
Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol.253, 76–108 (2002).
Google Scholar
Argot, C. Postcranial analysis of a carnivoran-like archaic ungulate: The case of Arctocyon primaevus (Arctocyonidae, Mammalia) from the late Paleocene of France. J. Mammal. Evol.20, 83–114 (2013).
Google Scholar
Horovitz, I. Postcranial skeleton of Ukhaatherium nessovi (Eutheria, Mammalia) from the late Cretaceous of Mongolia. J. Vert. Paleontol.23, 857–868 (2003).
Google Scholar
Chen, M. & Luo, Z. X. Postcranial skeleton of the Cretaceous mammal Akidolestes cifellii and its locomotor adaptations. J. Mammal. Evol.20, 159–189 (2013).
Google Scholar
Jäger, K. R. K., Luo, Z. X. & Martin, T. Postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and locomotor adaptation. J. Mammal. Evol.27, 349–372 (2020).
Google Scholar
Jenkins, F. A. Jr. & Parrington, F. R. The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Philos. Trans. R. Soc. Lond. B Biol. Sci.273, 387–431 (1976).
Google Scholar
Krause, D. W. & Jenkins, F. A. The postcranial skeleton of North American multituberculates. Bull. Mus. Comp. Zool.150, 199–246 (1983).
Hurum, J. H. & Kielan-Jaworowska, Z. Postcranial skeleton of a Cretaceous multituberculate mammal Catopsbaatar. Acta Palaeontol. Pol.53, 545–566 (2008).
Google Scholar
Panciroli, E. et al. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zool. J. Linnean Soc.192, 1323–1362 (2021).
Google Scholar
Candela, A. M. & Picasso, M. B. Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): Indicators of locomotor behavior in Miocene porcupines. J. Morphol.269, 552–593 (2008).
Google Scholar
Abello, M. A. & Candela, A. M. Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): An astonishing case of bipedalism among South American mammals. J. Mammal. Evol.27, 419–444 (2020).
Google Scholar
Kielan-Jaworowska, Z. & Gambaryan, P. P. Postcranial anatomy and habits of Asian multituberculate mammals. Foss. Strata36, 1–92 (1994).
Google Scholar
Krause, D. W., Hoffmann, S. & Werning, S. First postcranial remains of Multituberculata (Allotheria, Mammalia) from Gondwana. Cretaceous Res.80, 91–100 (2017).
Google Scholar
Chester, S. G. B., Sargis, E. J., Szalay, F. S., Archibald, J. D. & Averianov, A. O. Therian femora from the Late Cretaceous of Uzbekistan. Acta Palaeontol. Pol.57, 53–64 (2012).
Google Scholar
Gambaryan, P. P. & Averianov, A. O. Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia. Acta Palaeontol. Pol.46, 99–112 (2001).
Martin, T. Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool. J. Linnean Soc.145, 219–248 (2005).
Google Scholar
Luo, Z. X. & Wible, J. R. A Late Jurassic digging mammal and early mammalian diversification. Science308, 103–107 (2005).
Google Scholar
Rose, K. D. Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. J. Vert. Paleontol.19, 355–372 (1999).
Google Scholar
Shelley, S. L., Williamson, T. E. & Brusatte, S. L. The osteology of Periptychus carinidens: A robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America. PLOS ONE13, e0200132 (2018).
Google Scholar
Chinsamy, A. & Hurum, J. H. Bone microstructure and growth patterns of early mammals. Acta Palaeontol. Pol.51, 325–338 (2006).
Martinelli, A. G. et al. New cladotherian mammal from southern Chile and the evolution of mesungulatid meridiolestidans at the dusk of the Mesozoic era. Sci. Rep.11, 7594 (2021).
Google Scholar
Zhou, C. F., Bhullar, B. A. S., Neander, A. I., Martin, T. & Luo, Z. X. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science365, 276–279 (2019).
Google Scholar
Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol.34, 936–949 (2019).
Google Scholar
Argot, C. Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria), Borhyaena and Prothylacinus, from South America. Palaeontology46, 1213–1267 (2003).
Google Scholar
Argot, C. Evolution of South American mammalian predators (Borhyaenoidea): Anatomical and palaeobiological implications. Zool. J. Linnean Soc.140, 487–521 (2004).
Google Scholar
Fostowicz-Frelik, Ł. The hind limb skeleton and cursorial adaptations of the Plio-Pleistocene rabbit Hypolagus beremendensis. Acta Palaeontol. Pol.52, 447–476 (2007).
Gambaryan, P. P., Aristov, A. A., Dixon, J. M. & Zubtsova, G. Y. Peculiarities of the hind limb musculature in monotremes: An anatomical description and functional approach. Russian J. Theriol.1, 1–36 (2002).
Google Scholar
Warburton, N. M., Yakovleff, M. & Malric, A. Anatomical adaptations of the hind limb musculature of tree-kangaroos for arboreal locomotion (Marsupialia: Macropodinae). Aust. J. Zool.60, 246–258 (2012).
Google Scholar
Source link : https://www.nature.com/articles/s41598-024-53156-3
Author :
Publish date : 2024-02-03 03:00:00
Copyright for syndicated content belongs to the linked Source.