Genetic variability of Aedes aegypti (Diptera: Culicidae) in El Salvador and Honduras: presence of a widespread haplotype and implications for mosquito control | Parasites & Vectors

Genetic variability of Aedes aegypti (Diptera: Culicidae) in El Salvador and Honduras: presence of a widespread haplotype and implications for mosquito control | Parasites & Vectors

Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, et al. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution. 2014;68:514–25.

Article 
CAS 
PubMed 

Google Scholar 

Gloria-Soria A, Lima A, Lovin DD, Cunningham JM, Severson DW, Powell JR. Origin of a high-latitude population of Aedes aegypti in Washington DC. Am J Trop Med Hyg. 2018;98:445–52.

Article 
PubMed 

Google Scholar 

Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al. Global genetic diversity of Aedes aegypti. Mol Ecol. 2016;25:5377–95.

Article 
PubMed 
PubMed Central 

Google Scholar 

Bosio CF, Beaty BJ, Black WC IV. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg. 2018;59:965–70.

Article 

Google Scholar 

Dickson LB, Sanchez-Vargas I, Sylla M, Flemming K, Black WC IV. Vector competence in West African Aedes aegypti is flavivirus species and genotype dependent. PLoS Negl Trop Dis. 2014;8:e3153.

Article 
PubMed 
PubMed Central 

Google Scholar 

Amoa-Bosompem M, Kobayashi D, Itokawa K, et al. Determining vector competence of Aedes aegypti from Ghana in transmitting dengue virus serotypes 1 and 2. Parasite Vector. 2021;14:228.

Article 
CAS 

Google Scholar 

Rheinhold JM, Lazzari CR, Lahondere C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects. 2018;9:158.

Article 

Google Scholar 

Crawford JE, Clarke DW, Criswell V, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol. 2020;38:482–92.

Article 
CAS 
PubMed 

Google Scholar 

Sánchez-Aldana-Sánchez GA, Liedo P, Bond JG, Dor A. Release of sterile Aedes aegypti mosquitoes: chilling effect on mass-reared males survival and escape ability and on irradiated males sexual competitiveness. Sci Rep. 2023;13:3797.

Article 
PubMed 
PubMed Central 

Google Scholar 

Soper FL. Aedes aegypti and yellow fever. Bull World Health Organ. 1967;36:521–7.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Gubler DJ, Trent DW. Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis. 1993;2:383–93.

CAS 
PubMed 

Google Scholar 

Salvatella-Agrelo R. Aedes aegypti, Aedes albopictus (Diptera, Culicidae) y su papel como vectores en las Américas. La situación de Uruguay. Rev Med Uruguay. 1996;12:28–36.

Google Scholar 

Hayes JM, Garcia-Rivera E, Flores-Reyna R, Suarez-Rangel G, Rodriguez-Mata T, Coto-Portillo R, et al. Risk factors for infection during a severe dengue outbreak in El Salvador in 2000. Am J Trop Med Hyg. 2003;69:629–33.

Article 
PubMed 

Google Scholar 

Monteiro FA, Shama R, Martins AJ, Gloria-Soria A, Brown JE, Powell JR. Genetic diversity of Brazilian Aedes aegypti: patterns following an eradication program. PLoS Negl Trop Dis. 2014;8:e3167.

Article 
PubMed 
PubMed Central 

Google Scholar 

Joyce AL, Torres MM, Torres R, Moreno M. Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and Zika. Parasite Vector. 2018;11:637.

Article 

Google Scholar 

Escobar D, Ortiz B, Urrutia O, Fontecha G. Genetic diversity among four populations of Aedes aegypti (Diptera: Culicidae) from honduras as revealed by mitochondrial DNA cytochrome oxidase I. Pathogens. 2022;11:620.

Article 
PubMed 
PubMed Central 

Google Scholar 

Hotez PJ, Woc-Colburn L, Bottazzi ME. Neglected tropical diseases in Central America and panama: review of their prevalence, populations at risk and impact on regional development. Int J Parasitol. 2014;44:597–603.

Article 
PubMed 

Google Scholar 

Joyce AL, Alvarez FS, Hernandez E. Forest coverage and socioeconomic factors associated with dengue in El Salvador, 2011–2013. Vect Borne Zoon Dis. 2021;21:8.

Google Scholar 

Ávila-Agüero ML, Camacho-Badilla K, Brea-del-Castillo J, Cerezo L, Duenas L, Luque M, et al. Epidemiología del dengue en centroamérica y república dominicana. Rev Chilena Infectol. 2019;36:698–706.

Article 
PubMed 

Google Scholar 

MINSAL 2020. Boletines epidemiológicos semanales https://www.salud.gob.sv/boletines-epidemiologicos-2020/. Accessed 28 Mar 2024.

OPS. Dengue 2022. https://www3.paho.org/data/index.php/es/temas/indicadores-dengue.html. Accessed 28 Mar 2024.

Bennett KL, McMillan OW, Loaiza JR. The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes. Evol Appl. 2021;14:1301–13.

Article 
PubMed 
PubMed Central 

Google Scholar 

Eskildsen GA, Rovira JR, Smith O, Miller MJ, Bennett KL, McMillan WO, et al. Maternal invasion history of Aedes aegypti and Aedes albopictus into the Isthmus of panama: implications for the control of emergent viral disease agents. PLoS ONE. 2018;13:e0194874.

Article 
PubMed 
PubMed Central 

Google Scholar 

Apostol BL, Black WC, Reiter P, Miller BR. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am J Trop Med Hyg. 1994;51:89–97.

Article 
CAS 
PubMed 

Google Scholar 

Burkett-Cadena ND. Mosquitoes of the Southeastern United States. Tuscaloosa: University of Alabama; 2013. p. 202.

Google Scholar 

Qiagen. DNeasy tissue handbook. Valencia: Qiagen; 2006.

Google Scholar 

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

CAS 
PubMed 

Google Scholar 

Cywinska A, Hunter FF, Hebert PDN. Identifying canadian mosquito species through DNA barcodes. Med Vet Entomol. 2006;20:413–24.

Article 
CAS 
PubMed 

Google Scholar 

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.

Article 
PubMed 
PubMed Central 

Google Scholar 

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rozas J, et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol. 2017;2017:3299–302.

Article 

Google Scholar 

Leigh JW, Bryant D. POPART: full feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.

Article 

Google Scholar 

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour. 2010;10:564–7.

Article 
PubMed 

Google Scholar 

Peakall R, Smouse PE. GenAlEx 6: genetic analysis in excel. population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.

Article 

Google Scholar 

Paupy C, Le Goff G, Brengues C, Guerra M, Revolla J, Barja Simon Z, et al. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect Genet Evol. 2012;12:1260–9.

Article 
PubMed 

Google Scholar 

Costa da Silva AL, Capurro ML, Bracco JE. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz. 2005;100:539–44.

Article 
PubMed 

Google Scholar 

Herrera F, Urdaneta L, Rivero J, Zoghbi J, Ruiz J, Carrasquel G, et al. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz. 2006;101:625–33.

Article 
CAS 
PubMed 

Google Scholar 

Lima RS Jr, Scarpassa VM. Evidencia de dos linajes del vector del dengue Aedes aegypti en la Amazonía brasileña, con base en secuencias del gen ND4 del ADN mitocondrial. Genet Mol Biol. 2009;32:414–22.

Article 
CAS 
PubMed 

Google Scholar 

Crisci JV. The voice of historical biogeography. J Biogeogr. 2001;28:157–68.

Article 

Google Scholar 

Piñero D, Barahona A, Eguiarte L, Rocha Olivares A, Salas Lizana R. La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas, en Capital natural de México. Conabio, México: Vol.I: conocimiento actual de la biodiversidad; 2008. p. 437–94.

Google Scholar 

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bisset Lazcano JL, Rodríguez MM, San Martin JL, Romero JE, Montoya R. Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Rev Panam Salud Publica. 2009;26:229–34.

Article 

Google Scholar 

Franco DN, Nelly D, Cortes SP, Soledad P. Resistencia y susceptibilidad de Aedes aegypti a insecticidas y themephos en el municipio del distrito Central. Honduras Centro América. Tesis MSc en Epidemiología y Salud: Universidad Nacional Autónoma de Nicaragua, León; 2017.

Google Scholar 

World Mosquito Program. WMP El Salvador Fact Sheet. 2023. https://www.worldmosquitoprogram.org/en/global-progress/el-salvador. Accessed 26 Mar 2024.

Source link : https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-024-06312-7

Author :

Publish date : 2024-05-16 03:00:00

Copyright for syndicated content belongs to the linked Source.

Exit mobile version