A trans-oceanic flight of over 4,200 km by painted lady butterflies

A trans-oceanic flight of over 4,200 km by painted lady butterflies

Williams, C. B. The Migration of Butterflies (Oliver & Boyd, 1930).

Glick, P. A. The distribution of insects, spiders and mites in the air, 673. Technical Bulletin (United States Department, 1939).

Williams, C. B. Insect Migration (MacMillan, 1958).

Johnson, C. G. Migration and Dispersal of Insects by Flight (Metheun, 1969).

Yoshimoto, C. M., Gressitt, J. L. & Wolff, T. Air-borne insects from the Galathea expedition. Pac. insects 4, 269–291 (1962).

Google Scholar 

Gressitt, J. L. & Nakata, S. Trapping of air-borne insects on ships on the Pacific. Proc. Hawaii. Entomol. Soc. 16, 363–365 (1958).

Google Scholar 

Holapzel, E. P. & Harrel, J. C. Transoceanic dispersal studies of insects. Pac. Insects 10, 115–153 (1968).

Google Scholar 

Hardy, A. C. & Milne, P. S. Studies in the distribution of insects by aerial currents. Experiments in aerial tow-netting from kites. J. Anim. Ecol. 7, 199–229 (1938).

Article 

Google Scholar 

Bowden, J. & Johnson, C. G. Migrating and other terrestrial insects at sea. In Marine Insects, (ed. Cheng, J.) 97–118 (Oxford Elsevier, 1976).

Chapman, J. W., Drake, V. A. & Reynolds, D. R. Recent insights from radar studies of insect flight. Annu. Rev. Entomol. 56, 337–356 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Menz, M. H. M. et al. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science 377, 764–768 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (Cabi, 2012).

Hu, G. et al. Mass Seasonal Bioflows of High-flying Seasonal Migrants. Science 354, 1584–1587 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Talavera, G. & Vila, R. Discovery of mass migration and breeding of the painted lady butterfly Vanessa cardui in the Sub-Sahara: The Europe-Africa migration revisited. Biol. J. Linn. Soc. 120, 274–285 (2017).

Google Scholar 

Menchetti, M., Guéguen, M. & Talavera, G. Spatio-temporal ecological niche modelling of multigenerational insect migrations. Proc. R. Soc. B 286, 20191583 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Talavera, G. et al. The Afrotropical breeding grounds of the Palearctic-African migratory Painted Lady butteflies (Vanessa cardui). Proc. Natl Acad. Sci. 120, e2218280120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Talavera, G., Bataille, C. P., Benyamini, D., Gascoigne-Pees, M. & Vila, R. Round-trip across the Sahara: Afrotropical Painted Lady butterflies recolonize the Mediterranean in early spring. Biol. Lett. 14, 20180274 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Reich, M. et al. Intercontinental panmixia despite distinct migration distances in the trans-Saharan butterfly migrant Vanessa cardui. bioRxiv, https://www.biorxiv.org/content/10.1101/2023.12.10.569105v1 (2023).

Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).

Article 
PubMed 

Google Scholar 

Suchan, T., Talavera, G., Sáez, L., Ronikier, M. & Vila, R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol. Ecol. Resour. 19, 149–162 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Reich, M. S., Flockhart, D. T. T., Norris, D. R., Hu, L. & Bataille, C. P. Continuous-surface geographic assignment of migratory animals using strontium isotopes: A case study with monarch butterflies. Methods Ecol. Evol. 12, 2445–2457 (2021).

Article 

Google Scholar 

Bataille, C. P., Crowley, B. E., Wooller, M. J. & Bowen, G. J. Advances in global bioavailable strontium isoscapes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 555, 109849 (2020).

Article 

Google Scholar 

Hobson, K. A., Kardynal, K. J. & Koehler, G. Expanding the Isotopic Toolbox to Track Monarch Butterfly (Danaus plexippus) Origins and Migration: On the Utility of Stable Oxygen Isotope (δ18O) Measurements. Front. Ecol. Evol. 7, 224 (2019).

Article 

Google Scholar 

Bowen, G. J., Wassenaar, L. I. & Hobson, K. A. Global Application of Stable Hydrogen and Oxygen Isotopes to Wildlife Forensics. Oecologia 143, 337–348 (2005).

Article 
ADS 
PubMed 

Google Scholar 

Bowen, G. J. & Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 39, 1299 (2003).

Article 
ADS 

Google Scholar 

Ghouri, S. et al. A hydrogen isoscape for tracing the migration of herbivorous lepidopterans across the Afro‐Palearctic range. Rapid Commun. Mass Spectrom. 38, e9675 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Parlin, A. F. et al. The cost of movement: assessing energy expenditure in a long-distant ectothermic migrant under climate change. J. Exp. Biol. 226, 21 (2023).

Article 

Google Scholar 

Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).

Article 
PubMed 

Google Scholar 

Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: Climate change implications. Science 302, 1024–1027 (2003).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Prospero, J. M. et al. Characterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon Basin. Glob. Biogeochem. Cycles 34, e2020GB006536 (2020).

Article 
ADS 
CAS 

Google Scholar 

Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 42, 1984–1991 (2015).

Article 
ADS 
CAS 

Google Scholar 

Tsamalis, C., Chédin, A., Pelon, J. & Capelle, V. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmos. Chem. Phys. 13, 11235–11257 (2013).

Article 
ADS 
CAS 

Google Scholar 

Neild, A. F. E. The Butterflies of Venezuela. Part 2: Nymphaliddae II (Acareinae, Libytheinae, Nymphalinae, Ithomiinae, Morphinae) (Meridian Publications, 2008).

Lever, Y. et al. Lépidoptères de Guyane, vol. 3 (Lépidoptéristes de France, 2008).

GBIF. org, GBIF Occurrence Download, https://doi.org/10.15468/dl.2fthw8 (2022).

Hedlund, J. S. et al. Unraveling the World’s longest non-stop migration: The Indian Ocean crossing of the Globe Skimmer Dragonfly. Front. Ecol. Evol. 9, 525 (2021).

Article 

Google Scholar 

Urquhart, F. A. The monarch butterfly (University of Toronto Press, 1960).

Akers Pence, J. Longest regularly repeated migration. In University of Florida Book of Insect Records, (ed. Walter, T. J.) Chapter 35, http://entomology.ifas.ufl.edu/walker/ufbir/ (2001).

Heads, M. Molecular Panbiogeography of the Tropics (University of California Press, 2012).

Heads, M., Grehan, J. R., Nielsen, J. & Patrick, B. Biogeographic-tectonic calibration of 14 nodes in a butterfly timetree. Cladistics 39, 293–336 (2023).

Article 
PubMed 

Google Scholar 

Lovejoy, N. R., Mullen, S. P., Sword, G. A., Chapman, R. F. & Harrison, R. G. Ancient trans-Atlantic flight explains locust biogeography: molecular phylogenetics of Schistocerca. Proc. R. Soc. B 273, 767–774 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Bourguignon, T. et al. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Mol. Biol. Evol. 35, 970–983 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Rota, J., Peña, C. & Miller, S. E. The importance of long‐distance dispersal and establishment events in small insects: historical biogeography of metalmark moths (Lepidoptera, Choreutidae). J. Biogeogr. 43, 1254–1265 (2016).

Article 

Google Scholar 

Kergoat, G. J. et al. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol. Phylogenetics Evol. 65, 855–870 (2012).

Article 

Google Scholar 

Kodandaramaiah, U. & Wahlberg, N. Out‐of‐Africa origin and dispersal‐mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). J. Evolut. Biol. 20, 2181–2191 (2007).

Article 
CAS 

Google Scholar 

Kawahara, A. Y. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Shields, O. World distribution of the Vanessa cardui group. J. Lepid. Soc. 46, 235–238 (1992).

Google Scholar 

Braby, M. F. Butterflies of Australia. Their identification, biology and distribution, vol. 2 (CSIRO Publishing, Collingwood, 2000).

Wahlberg, N. & Rubinoff, D. Vagility across Vanessa (Lepidoptera: Nymphalidae): mobility in butterfly species does not inhibit the formation and persistence of isolated taxa. Syst. Entomol. 36, 362–370 (2011).

Article 

Google Scholar 

GBIF.org, GBIF Occurrence Download, https://doi.org/10.15468/dl.vqbh2k (2022).

Lorenz, M. W. Migration and trans-Atlantic flight of locusts. Quat. Int. 196, 4–12 (2009).

Article 

Google Scholar 

Richardson, C. & Nemeth, D. J. Hurricane-borne African Locusts (Schistocerca gregaria) on the Windward Islands. GeoJournal 23, 349–357 (1991).

Article 

Google Scholar 

Rosenberg, J. & Burt, P. J. A. Windborne displacements of desert locusts from Africa to the Caribbean and South America. Aerobiologia 15, 167–175 (1999).

Article 

Google Scholar 

Trakhtenbrot, A., Nathan, R., Perry, G. & Richardson, D. M. The importance of long-distance dispersal in biodiversity conservation. Diversity Distrib. 11, 173–181 (2005).

Article 

Google Scholar 

Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).

Article 
ADS 

Google Scholar 

Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345–368 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Sánchez-Guillén, R. A., Córdoba‐Aguilar, A., Hansson, B., Ott, J. & Wellenreuther, M. Evolutionary consequences of climate‐induced range shifts in insects. Biol. Rev. 91, 1050–1064 (2016).

Article 
PubMed 

Google Scholar 

Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

Article 

Google Scholar 

Eagles, D., Walker, P. J., Zalucki, M. P. & Durr, P. A. Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia. Preventive Vet. Med. 110, 312–322 (2013).

Article 
CAS 

Google Scholar 

Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 96, 2059–2077 (2015).

Article 
ADS 

Google Scholar 

Feng, H. Q., Wu, K. M., Ni, Y. X., Cheng, D.-F. & Guo, Y.-Y. High-Altitude Windborne Transport of Helicoverpa armigera (Lepidoptera: Noctuidae) in Mid-Summer in Northern China. J. Insect Behav. 18, 335–349 (2005).

Article 

Google Scholar 

Gibo, D. L. Altitudes attained by migrating monarch butterflies, Danaus p. plexippus (Lepidoptera: Danaidae), as reported by glider pilots. Can. J. Zool. 59, 571–572 (1981).

Article 

Google Scholar 

Mikkola, K. Red admirals Vanessa atalanta (Lepidoptera: Nymphalidae) select northern winds on southward migration. Entomologica Fennica 14, 15–24 (2003).

Article 

Google Scholar 

Grolemund, G. & Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).

Article 

Google Scholar 

Iannone, R. splitr: Use the HYSPLIT model from inside R. R package version 0.4.0.9000, https://github.com/rich-iannone/splitr (2021).

Santos Silva, T. & opentraj: Tools for Creating and Analysing Air Trajectory Data. R package version 1.0. https://CRAN.R-project.org/package=opentraj (2014).

Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R. N. 5, 9–13, (2005).

Google Scholar 

Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed. (Springer, 2013).

Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.5-11, https://CRAN.R-project.org/package=raster (2021).

Hijmans, R. J. geosphere: Spherical Trigonometry. R package version https://CRAN.R-project.org/package=geosphere (2021).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016); https://CRAN.R-project.org/package=ggplot2.

Garnier, S. et al. Rvision – Colorblind-Friendly Color Maps for R. R package version, https://cran.r-project.org/package=viridis (2021).

Hijmans, R. J. terra: Spatial Data Analysis. R package version https://CRAN.R-project.org/package=terra (2023).

Suchan, T. et al. A trans-oceanic flight of over 4,200 km by painted lady butteflies. https://github.com/GTlabIBB/Guyane, https://doi.org/10.5281/zenodo.10901405 (2024).

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS One 7, e37135 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Eaton, D. A. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Lohse, L. et al. The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758 [version 1]. Wellcome Open Res. 6, 324 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol. Biol. Evol. 35, 1284–1290 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets, GigaScience 4, 7 (2015).

Yi, X. & Latch, E. K. Nonrandom missing data can bias Principal Component Analysis inference of population genetic structure. Mol. Ecol. Resour. 22, 602–611 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Danecek, P. et al. 1000 Genomes Project Analysis Group, The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, S. et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS ONE 5, e8613 (2010).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a Guide to Methods and Applications (Academic Press, 1990) pp. 315–322.

Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

Article 

Google Scholar 

Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 081257 https://doi.org/10.1101/081257 (2016).

Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences, BioRxiv, https://doi.org/10.1101/074161 (2016).

Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Banchi, E. et al. PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database 2020, baz155 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lindroos, E. E., Bataille, C. P., Holder, P. W., Talavera, G. & Reich, M. S. Temporal stability of δ2H in insect tissues: Implications for isotope-based geographic assignments. Front. Ecol. Evol. 11, 1060836 (2023).

Article 

Google Scholar 

Reich, M. S. et al. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front. Ecol. Evol. 11, 1085903 (2023).

Article 

Google Scholar 

Wunder, M. B. Determining geographic patterns of migration and dispersal using stable isotopes in keratins. J. Mammal. 93, 360–367 (2012).

Article 

Google Scholar 

Hobson, K. A., Van Wilgenburg, S. L., Wassenaar, L. I. & Larson, K. Linking Hydrogen (δ2H) Isotopes in Feathers and Precipitation: Sources of Variance and Consequences for Assignment to Isoscapes. PLoS One 7, e35137 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ma, C., Vander Zanden, H. B., Wunder, M. B. & Bowen, G. J. assignR: An R package for isotope-based geographic assignment. Methods Ecol. Evol. 11, 996–1001 (2020).

Article 

Google Scholar 

Magozzi, S. et al. Calibration chain transformation improves the comparability of organic hydrogen and oxygen stable isotope data. Methods Ecol. Evol. 12, 732–747 (2021).

Article 

Google Scholar 

Hobson, K. A., Wassenaar, L. I. & Taylor, O. R. Stable Isotopes (δD and δ13C) Are Geographic Indicators of Natal Origins of Monarch Butterflies in Eastern North America. Oecologia 120, 397–404 (1999).

Article 
ADS 
PubMed 

Google Scholar 

Flockhart, D. T. T., Kyser, T. K., Chipley, D., Miller, N. G. & Norris, D. R. Experimental evidence shows no fractionation of strontium isotopes (87Sr/86Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science. Isotopes Environ. Health Stud. 51, 372–381 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Stefanescu, C. et al. Multi‐generational long‐distance migration of insects: Studying the painted lady butterfly in the Western Palaearctic. Ecography 36, 474–486 (2013).

Article 
ADS 

Google Scholar 

Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature 514, 317–321 (2014).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Woods, W. A., Jr. Metabolic energy use by honeybees in flight and butterflies at rest. (ProQuest Dissertations & Theses Global, 2005).

Gibo, D. L. & McCurdy, J. A. Lipid accumulation by migrating monarch butterflies (Danaus plexippus L.). Can. J. Zool. 71, 76–82 (1993).

Article 
CAS 

Google Scholar 

Source link : https://www.nature.com/articles/s41467-024-49079-2

Author :

Publish date : 2024-06-25 03:00:00

Copyright for syndicated content belongs to the linked Source.

Exit mobile version