Erkens, R. H. J. The less-splendid isolation of the South American continent. Front. Biogeogr.7, 89–90 (2015).
Prevosti Analía, M. & Forasiepi, F. J. Evolution of South American Mammalian Predators During the Cenozoic: Paleobiogeographic and Paleoenvironmental Contingencies http://www.springer.com/series/10172 (2018).
Webb, S. D. Late Cenozoic mammal dispersals between the Americas. In The Great American Biotic Interchange, 357–386 (1985).
Marshall, L. G. Land mammals and the great American interchange. Sci. Am. 76, 380–388 (1988).
Cione, A. L., Gasparini, G. M., Soibelzon, E., Soibelzon, L. H. & Tonni, E. P. The Great American Biotic Interchange A South American Perspective (Springer Nature, 2015).
Woodburne, M. O. The great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J. Mamm. Evol.17, 245–264 (2010).
Google Scholar
Tarquini, S. D., Ladevèze, S. & Prevosti, F. J. The multicausal twilight of South American native mammalian predators (metatheria, sparassodonta). Sci. Rep.12, 1224 (2022).
Google Scholar
Melchionna, M. et al. A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth. Palaeontology64, 573–584 (2021).
Google Scholar
Savage, R. J. G. Evolution in carnivorous mammals. Paleontology20, 237–271 (1977).
Hardin, G. The competitive exclusion principle. Science (1979)131, 1292–1297 (1960).
Google Scholar
Gause, G. F. The Struggle for Existence. https://www.britannica.com/science/struggle-for-existence (1934).
Prevosti, F. J., Forasiepi, A. & Zimicz, N. The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J. Mamm. Evol.20, 3–21 (2013).
Google Scholar
Pino, K. et al. Regional landscape change triggered by Andean uplift: the extinction of sparassodonta (Mammalia, Metatheria) in South America. Glob. Planet. Change210, 103758 (2022).
Sorkin, B. A biomechanical constraint on body mass in terrestrial mammalian predators. Lethaia41, 333–347 (2008).
Google Scholar
Ercoli, M. D. & Prevosti, F. J. Estimación de masa de las especies de sparassodonta (Metatheria, Mammalia) de la Edad santacrucense (Mioceno Temprano) a partir de tamaños de centroide de elementos apendiculares: inferencias paleoecoló. gicas. Ameghiniana48, 462–479 (2011).
Google Scholar
Domingo, L., Tomassini, R. L., Montalvo, C. I., Sanz-Pérez, D. & Alberdi, M. T. The great American biotic interchange revisited: a new perspective from the stable isotope record of Argentine pampas fossil mammals. Sci. Rep.10, 1608 (2020).
Manzuetti, A., Perea, D., Ubilla, M. & Rinderknecht, A. First record of Smilodon fatalis Leidy, 1868 (Felidae, Machairodontinae) in the extra-andean region of South America (late Pleistocene, Sopas Formation), Uruguay: taxonomic and paleobiogeographic implications. Quat. Sci. Rev.180, 57–62 (2018).
Google Scholar
Forasiepi, A. M., MacPhee, R. D. E. & Del Pino, S. H. Caudal cranium of thylacosmilus atrox (mammalia, metatheria, sparassodonta), a South American predaceous sabertooth. Bull. Am. Mus. Nat. Hist.2019, 1–64 (2019).
Google Scholar
Grinder, R. M. & Wiens, J. J. Niche width predicts extinction from climate change and vulnerability of tropical species. Glob. Chang. Biol.29, 618–630 (2022).
Google Scholar
Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci.115, 12471–12476 (2018).
Google Scholar
Orgeret, F. et al. Climate change impacts on seabirds and marine mammals: The importance of study duration, thermal tolerance and generation time. Ecol. Lett.25, 218–239 (2022).
Google Scholar
López-Aguirre, C., Archer, M., Hand, S. J. & Laffan, S. W. Extinction of South American sparassodontans (Metatheria): environmental fluctuations or complex ecological processes? Palaeontology60, 91–115 (2017).
Google Scholar
http://paleobiodb.org/data1.2/occs/list.csv?&base_id=40045&show=coords,attr,loc,prot,time,strat,stratext,lith,lithext,geo,rem,ent,entname,crmod,paleoloc&datainfo. Downloaded from the Paleobiology Database on 27 December (2022).
Paleobiology Database. Paleobiology Database http://paleobiodb.org/data1.2/occs/list.csv?&base_id=41079&show=coords,attr,loc,prot,time,strat,stratext,lith,lithext,geo,rem,ent,entname,crmod,paleoloc&datainfo. Downloaded from the Paleobiology Database on 27 December (2022).
Barreto, E., Holden, P. B., Edwards, N. R. & Rangel, T. F. PALEO-PGEM-Series: a spatial time series of the global climate over the last 5 million years (Plio-Pleistocene). Glob. Ecol. Biogeography32, 1034–1045 (2023).
Google Scholar
Hijmans R. Raster: Geographic Data Analysis and Modeling (3.6). https://cran.r-project.org/web/packages/raster/raster.pdf (2023).
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution (N Y)62, 2868–2883 (2008).
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeography21, 481–497 (2012).
Google Scholar
Broennimann O., Di Cola V. & Guisan A. ecospat: Spatial Ecology Miscellaneous Methods (4.0). http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html (2022).
Schoener, ThomasW. The Anolis lizards of bimini: resource partitioning in a complex fauna. Ecology49, 704–726 (1968).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Viena, Austria. https://www.R-project.org (2023).
Dray, S. & Dufour, A.-B. Journal of Statistical Software the Ade4 Package: Implementing the Duality Diagram for Ecologists. http://www.jstatsoft.org/ (2007).
Source link : https://www.nature.com/articles/s44185-024-00045-7
Author :
Publish date : 2024-06-05 06:34:05
Copyright for syndicated content belongs to the linked Source.