Williams, C. B. The Migration of Butterflies (Oliver & Boyd, 1930).
Glick, P. A. The distribution of insects, spiders and mites in the air, 673. Technical Bulletin (United States Department, 1939).
Williams, C. B. Insect Migration (MacMillan, 1958).
Johnson, C. G. Migration and Dispersal of Insects by Flight (Metheun, 1969).
Yoshimoto, C. M., Gressitt, J. L. & Wolff, T. Air-borne insects from the Galathea expedition. Pac. insects4, 269–291 (1962).
Gressitt, J. L. & Nakata, S. Trapping of air-borne insects on ships on the Pacific. Proc. Hawaii. Entomol. Soc.16, 363–365 (1958).
Holapzel, E. P. & Harrel, J. C. Transoceanic dispersal studies of insects. Pac. Insects10, 115–153 (1968).
Hardy, A. C. & Milne, P. S. Studies in the distribution of insects by aerial currents. Experiments in aerial tow-netting from kites. J. Anim. Ecol.7, 199–229 (1938).
Google Scholar
Bowden, J. & Johnson, C. G. Migrating and other terrestrial insects at sea. In Marine Insects, (ed. Cheng, J.) 97–118 (Oxford Elsevier, 1976).
Chapman, J. W., Drake, V. A. & Reynolds, D. R. Recent insights from radar studies of insect flight. Annu. Rev. Entomol.56, 337–356 (2011).
Google Scholar
Menz, M. H. M. et al. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science377, 764–768 (2022).
Google Scholar
Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (Cabi, 2012).
Hu, G. et al. Mass Seasonal Bioflows of High-flying Seasonal Migrants. Science354, 1584–1587 (2016).
Google Scholar
Talavera, G. & Vila, R. Discovery of mass migration and breeding of the painted lady butterfly Vanessa cardui in the Sub-Sahara: The Europe-Africa migration revisited. Biol. J. Linn. Soc.120, 274–285 (2017).
Menchetti, M., Guéguen, M. & Talavera, G. Spatio-temporal ecological niche modelling of multigenerational insect migrations. Proc. R. Soc. B286, 20191583 (2019).
Google Scholar
Talavera, G. et al. The Afrotropical breeding grounds of the Palearctic-African migratory Painted Lady butteflies (Vanessa cardui). Proc. Natl Acad. Sci.120, e2218280120 (2023).
Google Scholar
Talavera, G., Bataille, C. P., Benyamini, D., Gascoigne-Pees, M. & Vila, R. Round-trip across the Sahara: Afrotropical Painted Lady butterflies recolonize the Mediterranean in early spring. Biol. Lett.14, 20180274 (2018).
Google Scholar
Reich, M. et al. Intercontinental panmixia despite distinct migration distances in the trans-Saharan butterfly migrant Vanessa cardui. bioRxiv, https://www.biorxiv.org/content/10.1101/2023.12.10.569105v1 (2023).
Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett.18, 287–302 (2015).
Google Scholar
Suchan, T., Talavera, G., Sáez, L., Ronikier, M. & Vila, R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol. Ecol. Resour.19, 149–162 (2019).
Google Scholar
Reich, M. S., Flockhart, D. T. T., Norris, D. R., Hu, L. & Bataille, C. P. Continuous-surface geographic assignment of migratory animals using strontium isotopes: A case study with monarch butterflies. Methods Ecol. Evol.12, 2445–2457 (2021).
Google Scholar
Bataille, C. P., Crowley, B. E., Wooller, M. J. & Bowen, G. J. Advances in global bioavailable strontium isoscapes. Palaeogeogr. Palaeoclimatol. Palaeoecol.555, 109849 (2020).
Google Scholar
Hobson, K. A., Kardynal, K. J. & Koehler, G. Expanding the Isotopic Toolbox to Track Monarch Butterfly (Danaus plexippus) Origins and Migration: On the Utility of Stable Oxygen Isotope (δ18O) Measurements. Front. Ecol. Evol.7, 224 (2019).
Google Scholar
Bowen, G. J., Wassenaar, L. I. & Hobson, K. A. Global Application of Stable Hydrogen and Oxygen Isotopes to Wildlife Forensics. Oecologia143, 337–348 (2005).
Google Scholar
Bowen, G. J. & Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res.39, 1299 (2003).
Google Scholar
Ghouri, S. et al. A hydrogen isoscape for tracing the migration of herbivorous lepidopterans across the Afro‐Palearctic range. Rapid Commun. Mass Spectrom.38, e9675 (2024).
Google Scholar
Parlin, A. F. et al. The cost of movement: assessing energy expenditure in a long-distant ectothermic migrant under climate change. J. Exp. Biol.226, 21 (2023).
Google Scholar
Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol.27, 47–56 (2012).
Google Scholar
Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: Climate change implications. Science302, 1024–1027 (2003).
Google Scholar
Prospero, J. M. et al. Characterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon Basin. Glob. Biogeochem. Cycles34, e2020GB006536 (2020).
Google Scholar
Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett.42, 1984–1991 (2015).
Google Scholar
Tsamalis, C., Chédin, A., Pelon, J. & Capelle, V. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmos. Chem. Phys.13, 11235–11257 (2013).
Google Scholar
Neild, A. F. E. The Butterflies of Venezuela. Part 2: Nymphaliddae II (Acareinae, Libytheinae, Nymphalinae, Ithomiinae, Morphinae) (Meridian Publications, 2008).
Lever, Y. et al. Lépidoptères de Guyane, vol. 3 (Lépidoptéristes de France, 2008).
GBIF. org, GBIF Occurrence Download, https://doi.org/10.15468/dl.2fthw8 (2022).
Hedlund, J. S. et al. Unraveling the World’s longest non-stop migration: The Indian Ocean crossing of the Globe Skimmer Dragonfly. Front. Ecol. Evol.9, 525 (2021).
Google Scholar
Urquhart, F. A. The monarch butterfly (University of Toronto Press, 1960).
Akers Pence, J. Longest regularly repeated migration. In University of Florida Book of Insect Records, (ed. Walter, T. J.) Chapter 35, http://entomology.ifas.ufl.edu/walker/ufbir/ (2001).
Heads, M. Molecular Panbiogeography of the Tropics (University of California Press, 2012).
Heads, M., Grehan, J. R., Nielsen, J. & Patrick, B. Biogeographic-tectonic calibration of 14 nodes in a butterfly timetree. Cladistics39, 293–336 (2023).
Google Scholar
Lovejoy, N. R., Mullen, S. P., Sword, G. A., Chapman, R. F. & Harrison, R. G. Ancient trans-Atlantic flight explains locust biogeography: molecular phylogenetics of Schistocerca. Proc. R. Soc. B273, 767–774 (2006).
Google Scholar
Bourguignon, T. et al. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Mol. Biol. Evol.35, 970–983 (2018).
Google Scholar
Rota, J., Peña, C. & Miller, S. E. The importance of long‐distance dispersal and establishment events in small insects: historical biogeography of metalmark moths (Lepidoptera, Choreutidae). J. Biogeogr.43, 1254–1265 (2016).
Google Scholar
Kergoat, G. J. et al. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol. Phylogenetics Evol.65, 855–870 (2012).
Google Scholar
Kodandaramaiah, U. & Wahlberg, N. Out‐of‐Africa origin and dispersal‐mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). J. Evolut. Biol.20, 2181–2191 (2007).
Google Scholar
Kawahara, A. Y. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol.7, 903–913 (2023).
Google Scholar
Shields, O. World distribution of the Vanessa cardui group. J. Lepid. Soc.46, 235–238 (1992).
Braby, M. F. Butterflies of Australia. Their identification, biology and distribution, vol. 2 (CSIRO Publishing, Collingwood, 2000).
Wahlberg, N. & Rubinoff, D. Vagility across Vanessa (Lepidoptera: Nymphalidae): mobility in butterfly species does not inhibit the formation and persistence of isolated taxa. Syst. Entomol.36, 362–370 (2011).
Google Scholar
GBIF.org, GBIF Occurrence Download, https://doi.org/10.15468/dl.vqbh2k (2022).
Lorenz, M. W. Migration and trans-Atlantic flight of locusts. Quat. Int.196, 4–12 (2009).
Google Scholar
Richardson, C. & Nemeth, D. J. Hurricane-borne African Locusts (Schistocerca gregaria) on the Windward Islands. GeoJournal23, 349–357 (1991).
Google Scholar
Rosenberg, J. & Burt, P. J. A. Windborne displacements of desert locusts from Africa to the Caribbean and South America. Aerobiologia15, 167–175 (1999).
Google Scholar
Trakhtenbrot, A., Nathan, R., Perry, G. & Richardson, D. M. The importance of long-distance dispersal in biodiversity conservation. Diversity Distrib.11, 173–181 (2005).
Google Scholar
Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change10, 868–875 (2020).
Google Scholar
Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol.63, 345–368 (2018).
Google Scholar
Sánchez-Guillén, R. A., Córdoba‐Aguilar, A., Hansson, B., Ott, J. & Wellenreuther, M. Evolutionary consequences of climate‐induced range shifts in insects. Biol. Rev.91, 1050–1064 (2016).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst.37, 637–669 (2006).
Google Scholar
Eagles, D., Walker, P. J., Zalucki, M. P. & Durr, P. A. Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia. Preventive Vet. Med.110, 312–322 (2013).
Google Scholar
Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature574, 404–408 (2019).
Google Scholar
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc.96, 2059–2077 (2015).
Google Scholar
Feng, H. Q., Wu, K. M., Ni, Y. X., Cheng, D.-F. & Guo, Y.-Y. High-Altitude Windborne Transport of Helicoverpa armigera (Lepidoptera: Noctuidae) in Mid-Summer in Northern China. J. Insect Behav.18, 335–349 (2005).
Google Scholar
Gibo, D. L. Altitudes attained by migrating monarch butterflies, Danaus p. plexippus (Lepidoptera: Danaidae), as reported by glider pilots. Can. J. Zool.59, 571–572 (1981).
Google Scholar
Mikkola, K. Red admirals Vanessa atalanta (Lepidoptera: Nymphalidae) select northern winds on southward migration. Entomologica Fennica14, 15–24 (2003).
Google Scholar
Grolemund, G. & Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw.40, 1–25 (2011).
Google Scholar
Iannone, R. splitr: Use the HYSPLIT model from inside R. R package version 0.4.0.9000, https://github.com/rich-iannone/splitr (2021).
Santos Silva, T. & opentraj: Tools for Creating and Analysing Air Trajectory Data. R package version 1.0. https://CRAN.R-project.org/package=opentraj (2014).
Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R. N.5, 9–13, (2005).
Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed. (Springer, 2013).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.5-11, https://CRAN.R-project.org/package=raster (2021).
Hijmans, R. J. geosphere: Spherical Trigonometry. R package version https://CRAN.R-project.org/package=geosphere (2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016); https://CRAN.R-project.org/package=ggplot2.
Garnier, S. et al. Rvision – Colorblind-Friendly Color Maps for R. R package version, https://cran.r-project.org/package=viridis (2021).
Hijmans, R. J. terra: Spatial Data Analysis. R package version https://CRAN.R-project.org/package=terra (2023).
Suchan, T. et al. A trans-oceanic flight of over 4,200 km by painted lady butteflies. https://github.com/GTlabIBB/Guyane, https://doi.org/10.5281/zenodo.10901405 (2024).
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS One7, e37135 (2012).
Google Scholar
Eaton, D. A. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics36, 2592–2594 (2020).
Google Scholar
Lohse, L. et al. The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758 [version 1]. Wellcome Open Res.6, 324 (2021).
Google Scholar
Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol. Biol. Evol.35, 1284–1290 (2018).
Google Scholar
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets, GigaScience4, 7 (2015).
Yi, X. & Latch, E. K. Nonrandom missing data can bias Principal Component Analysis inference of population genetic structure. Mol. Ecol. Resour.22, 602–611 (2022).
Google Scholar
Danecek, P. et al. 1000 Genomes Project Analysis Group, The variant call format and VCFtools. Bioinformatics27, 2156–2158 (2011).
Google Scholar
Chen, S. et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS ONE5, e8613 (2010).
Google Scholar
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a Guide to Methods and Applications (Academic Press, 1990) pp. 315–322.
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics30, 614–620 (2013).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J.17, 10–12 (2011).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ4, e2584 (2016).
Google Scholar
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 081257 https://doi.org/10.1101/081257 (2016).
Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences, BioRxiv, https://doi.org/10.1101/074161 (2016).
Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol.15, 20 (2015).
Google Scholar
Banchi, E. et al. PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database2020, baz155 (2020).
Google Scholar
Lindroos, E. E., Bataille, C. P., Holder, P. W., Talavera, G. & Reich, M. S. Temporal stability of δ2H in insect tissues: Implications for isotope-based geographic assignments. Front. Ecol. Evol.11, 1060836 (2023).
Google Scholar
Reich, M. S. et al. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front. Ecol. Evol.11, 1085903 (2023).
Google Scholar
Wunder, M. B. Determining geographic patterns of migration and dispersal using stable isotopes in keratins. J. Mammal.93, 360–367 (2012).
Google Scholar
Hobson, K. A., Van Wilgenburg, S. L., Wassenaar, L. I. & Larson, K. Linking Hydrogen (δ2H) Isotopes in Feathers and Precipitation: Sources of Variance and Consequences for Assignment to Isoscapes. PLoS One7, e35137 (2012).
Google Scholar
Ma, C., Vander Zanden, H. B., Wunder, M. B. & Bowen, G. J. assignR: An R package for isotope-based geographic assignment. Methods Ecol. Evol.11, 996–1001 (2020).
Google Scholar
Magozzi, S. et al. Calibration chain transformation improves the comparability of organic hydrogen and oxygen stable isotope data. Methods Ecol. Evol.12, 732–747 (2021).
Google Scholar
Hobson, K. A., Wassenaar, L. I. & Taylor, O. R. Stable Isotopes (δD and δ13C) Are Geographic Indicators of Natal Origins of Monarch Butterflies in Eastern North America. Oecologia120, 397–404 (1999).
Google Scholar
Flockhart, D. T. T., Kyser, T. K., Chipley, D., Miller, N. G. & Norris, D. R. Experimental evidence shows no fractionation of strontium isotopes (87Sr/86Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science. Isotopes Environ. Health Stud.51, 372–381 (2015).
Google Scholar
Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud.39, 211–217 (2003).
Google Scholar
Stefanescu, C. et al. Multi‐generational long‐distance migration of insects: Studying the painted lady butterfly in the Western Palaearctic. Ecography36, 474–486 (2013).
Google Scholar
Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature514, 317–321 (2014).
Google Scholar
Woods, W. A., Jr. Metabolic energy use by honeybees in flight and butterflies at rest. (ProQuest Dissertations & Theses Global, 2005).
Gibo, D. L. & McCurdy, J. A. Lipid accumulation by migrating monarch butterflies (Danaus plexippus L.). Can. J. Zool.71, 76–82 (1993).
Google Scholar
Source link : https://www.nature.com/articles/s41467-024-49079-2
Author :
Publish date : 2024-06-25 03:00:00
Copyright for syndicated content belongs to the linked Source.